代数稳定判据

编辑:诬蔑网互动百科 时间:2019-12-07 12:41:23
编辑 锁定
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
一种判定依据,是根据系统特征多项式的系数直接判断系统稳定性的判据。系统的特征多项式就是系统传递函数的分母多项式,它是复变数s的一个代数多项式,使这一多项式为零而求得的s值称为特征多项式的根。
中文名
代数稳定判据
外文名
algebraic stability criterion
判    据
系统特征多项式的系数
基本运算律
加法交换律、加法结合律等

目录

代数稳定判据基本内容

编辑
代数稳定判据。algebraic stability criterion 。根据系统特征多项式的系数直接判断系统稳定性的判据。系统的特征多项式就是系统传递函数的分母多项式,它是复变数s的一个代数多项式,使这一多项式为零而求得的s值称为特征多项式的根。代数稳定判据只适用于线性定常系统(见线性系统、定常系统)且其特征多项式能给出的情况。线性定常系统稳定的充分必要条件,是其特征多项式的根均具有负实部,亦即均位于不包含虚轴的左半s复数平面内。代数稳定判据的优点是可以避免求根的复杂过程,直接根据多项式的系数的一些代数运算,来判定系统是否满足上述稳定条件。

代数稳定判据规则

编辑
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。
词条标签:
理学